The bZIP Transcription Factor Fgap1 Mediates Oxidative Stress Response and Trichothecene Biosynthesis But Not Virulence in Fusarium graminearum

نویسندگان

  • Mathilde Montibus
  • Christine Ducos
  • Marie-Noelle Bonnin-Verdal
  • Jorg Bormann
  • Nadia Ponts
  • Florence Richard-Forget
  • Christian Barreau
چکیده

Redox sensing is of primary importance for fungi to cope with oxidant compounds found in their environment. Plant pathogens are particularly subject to the oxidative burst during the primary steps of infection. In the budding yeast Saccharomyces cerevisiae, it is the transcription factor Yap1 that mediates the response to oxidative stress via activation of genes coding for detoxification enzymes. In the cereal pathogen Fusarium graminearum, Fgap1 a homologue of Yap1 was identified and its role was investigated. During infection, this pathogen produces mycotoxins belonging to the trichothecenes family that accumulate in the grains. The global regulation of toxin biosynthesis is not completely understood. However, it is now clearly established that an oxidative stress activates the production of toxins by F. graminearum. The involvement of Fgap1 in this activation was investigated. A deleted mutant and a strain expressing a truncated constitutive form of Fgap1 were constructed. None of the mutants was affected in pathogenicity. The deleted mutant showed higher level of trichothecenes production associated with overexpression of Tri genes. Moreover activation of toxin accumulation in response to oxidative stress was no longer observed. Regarding the mutant with the truncated constitutive form of Fgap1, toxin production was strongly reduced. Expression of oxidative stress response genes was not activated in the deleted mutant and expression of the gene encoding the mitochondrial superoxide dismutase MnSOD1 was up-regulated in the mutant with the truncated constitutive form of Fgap1. Our results demonstrate that Fgap1 plays a key role in the link between oxidative stress response and F. graminearum secondary metabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum.

Fusarium head blight caused by Fusarium graminearum is one of the most destructive diseases of wheat and barley. Deoxynivalenol (DON) produced by the pathogen is an important mycotoxins and virulence factor. Because oxidative burst is a common defense response and reactive oxygen species (ROS) induces DON production, in this study, we characterized functional relationships of three stress-relat...

متن کامل

Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation.

The gene Tri12 encodes a predicted major facilitator superfamily protein suggested to play a role in export of trichothecene mycotoxins produced by Fusarium spp. It is unclear, however, how the Tri12 protein (Tri12p) may influence trichothecene sensitivity and virulence of the wheat pathogen Fusarium graminearum. In this study, we establish a role for Tri12 in toxin accumulation and sensitivity...

متن کامل

Comparative Analysis of Deoxynivalenol Biosynthesis Related Gene Expression among Different Chemotypes of Fusarium graminearum in Spring Wheat

Fusarium mycotoxins, deoxynivalenol (DON) and nivalenol (NIV) act as virulence factors and are essential for symptom development after initial infection in wheat. To date, 16 genes have been identified in the DON biosynthesis pathway. However, a comparative gene expression analysis in different chemotypes of Fusarium graminearum in response to Fusarium head blight infection remains to be explor...

متن کامل

Altered regulation of 15-acetyldeoxynivalenol production in Fusarium graminearum.

Most Fusarium graminearum isolates produce low or undetectable levels of trichothecenes in liquid shake cultures, making it difficult to perform biochemical studies of trichothecene biosynthesis. To develop strains with higher levels of trichothecene production under liquid shake conditions we transformed F. graminearum with both a reporter gene containing a homologous trichothecene pathway gen...

متن کامل

The trichothecene biosynthesis regulatory gene from the type B producer Fusarium strains: sequence of Tri6 and its expression in Escherichia coli.

A genomic DNA fragment containing Tri6, a transcription activator gene of trichothecene biosynthesis, was cloned by vectorette PCR from Fusarium graminearum F15, which produces type B trichothecene, deoxynivalenol. The nucleotide sequence of the gene showed 84% of identity to that of the type A trichothecene producer Fusarium sporotrichioides NRRL 3299, but the sequence around the initiation co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013